814 ATAA JOURNAL

VOL. 1, NO. 4

Equilibrium Behavior of Fluids in Containers at Zero Gravity

J. T. Neu* anp Roserr J. Goont
General Dynamics/ Astronautics, San Diego, Calif.

It is predicted that a wall-wetting fluid in a zero-gravity environment will distribute itself
about the tank walls with the vapor centrally located. All liquid-vapor interface areas will
have uniform escaping tendency, and therefore the curvature of the bulk liquid surface will
be uniform, and the film wet surfaces will assume a thickness consistent with the established
escaping tendency. Thus tubes of diameter smaller than the tank diameter will fill with fluid,
and the fluid may be collected in desired volumesin the tank by use of baffles.

Nomenclature

Aqg = ares of drop of liquid

4, = area of tank

Ap = area of bubble in liquid

AF = free energy

h = film thickness

k = constant

n = thickness in monolayers

P = vapor pressure over given surface

P = vapor pressure over a flat surface

P, P, = pressures on each side of a curved surface; P; is the
pressure in the liquid, P, the pressure in the vapor

R = gas constant

71, rs = orthogonal radii of curvature. These radii are defined
80 a8 to be positive if they lie in the liquid phase (in
a liquid drop) and negative in the gas phase (in a
vapor bubble)

S = gpreading coefficient

8 = constant

T = temperature

14 = molar volume

vsv = interface free energy between solid and vapor

vLs = interfacefree energy between liquid and solid

yrLv = interface free energy between liquid and vapor

v = interface foree = surface tension

6, = equilibrium contact angle

Introduction

TPYHERE are many engineering problems associated with

the handling of fluids in zero-gravity fields. Cryogenic
liquids are subject to boiloff, and a vent system must be
provided which does not expel liquid. Also, fuel lines must
be filled before rocket restarts can be made. Knowledge
of the spatial configuration of the fluids is required for solu-
tions to many of these problems. The configuration at any
time is a function of many things, including interface energies,
tank shape, liquid-to-volume ratio, heat transfer, mechanical
disturbances, etc. In low earth orbits, drag forces are suffi-
elent to have a large effect on the configuration.

To put these forces in perspective, the rough order of
magnitude of the orienting forces present on an orbiting
fluid in a tank are given in Table 1.

Heat input is not listed since it cannot be listed properly
as a force. The table could be recompiled on a stabilization
energy basis, wherein the energies evolved in going from
some given configuration (say the rest configuration on the
ground) to the stable configuration in orbit are listed. The
rough order of magnitude of capillary energy for the model
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considered on this basis is 3 X 10° erg. The solar radiant
heat incident upon the vehicle is 4 X 10! erg/sec. Even if
909, of this energy is reflected, energy absorbed from the
sun in 1 sec is a million times greater than the capillary
stabilization energy. This heat input would lead to thermal
gradients that certainly would influence the configuration.

Various treatments of the problems have appeared in the
literature. Zero-g fluid handling as it relates to the Agena
vehicle has been discussed by Satterlee.! The reasonable
conclusion is reached that, where drag predominates, the
propellants should gather at the forward end of the tank with
highly curved gas-liquid surfaces. At higher altitudes,
centripetal acceleration forces the fluids to opposite ends of
the vehicle. The concept of constant curvature of the Hquid-
gas interface at equilibrium is mentioned. Mean curvature
erroneously is defined as mean temperature.

In discussing a large number of zero-g space powerplant
problems, Unterberg and Congelliere? conclude that, if the
center of mass is below the propellant tanks, liquids will mi-
grate toward the center of mass during long zero-g coast
periods. It is felt that mass attractive forces will exert an
influence but that they will be essentially negligible in com-
parison to other forces present, as shown in Table 1.

A good, detailed treatment of intermolecular forces that
determine the behavior of a liquid in a weightless or near-
weightless condition has been given by Benedikt.?

In this paper the equilibrium configuration of a fluid with
given interfacial free-energy relations, in the absence of a
gravity field, is considered. The absence of unbalanced
forces, mechanical or thermal, is assumed (except for a
qualitative note on the effects of temperature gradients).
This is not to imply that the unbalanced forces are not im-
portant; indeed, as.just noted, such forces may play a
dominant role. The determination of the equilibrium con-
figuration is important because 1t may be used as a starting
point for considerations of the thermal and inertial perturba-
tions.

The method employed in this study will be based on inter-
face energy considerations. A similar approach has been
taken by Li.* His arguments in establishing that the fluid
coats the wall are not rigorous, however, since certain terms
have been omitted in the surface free-energy summation
equation [namely, the terms yzvd, — yvdsin Eq. (5)].

It should be kept in mind that the establishment of the
equilibrium spatial configuration by surface tension manipu-
latien of fluids requires time. If a fluid is displaced from
equilibrium, the surface tension forces will tend to form the
fluid into the equilibrium spatial configuration, but an “over-
shoot” may oeccur. The equilibrium configuration cannot
be established until the surface free energy in excess of that
energy existing at equilibrium is dissipated. The viscosity
of the liquid will cause the excess surface free energy to be
converted into heat. The process is, of course, not in-
stantaneous but requires time.

If models are used to study the damping process, it should
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Table 1 Orienting forces on fluid in orbiting tank;
rough order of magnitude?

Gravitational attractive force between liquid
mass and vehicle

Inertial force due to ‘“‘aerodynamic’” drag,
300-naut-mile orbit

Capillary force

Inertial force due to “aerodynamic” drag,
90-naut-mile orbit

0.05 dyne

100.00 dynes
1,300.00 dynes

80,000.00 dynes

@ A sphere of liquid hydrogen of 100-cm radius (280 kg) was assumed to
be in orbit in a tank of 28 m? cross-sectional area. The center of mass of
the hydrogen and the center of mass of the tank plus engines (220 kg) were
assumed to be 300 ¢cm apart.

be kept in mind that the time for the attainment of equilib-
rium will be a function of the size of the container. The
mass of fluid to be placed in the equilibrium position increases
as the cube of the tank radius. Surface free energy to
manipulate this fluid increases only as the square of the
radius. Thus, as the tank gets larger, the relative force per
unit mass to manipulate the fluid becomes less, and un-
doubtedly the time required will be longer.

Energy Considerations

Consider a tank containing only a fluid and its vapor.
Heat transfer and mechanical disturbances are absent, and
the tank and its contents are in equilibrium. There is no
gravitational field acting upon the tank. Under these cir-
cumstances, the interfacial free energies between the two
phases and the material of the tank walls will determine the
configuration.

The wetting of a solid by a liquid is governed by the
spreading coefficient :

S = ysy — vsz — Yv -
= —Aﬁyspreading (1)

The spreading coefficient is by definition the negative of the
free energy change for the process of spreading the liguid over
the solid; S may be positive (corresponding to spontaneous
spreading) or negative. If, and only if, S is negative or
zero, Young’s equation holds® (see Fig. 1):

Ysv = Ysr + vyiv cosl, 2

It is found, in general, that on hard solids (which have
relatively high surface free energies) most liquids form zero
contact angles,t and hence, for these systems,

Ysv = Ysr + Yiv 3)

This observation is in aceord with current theories of spread-
ing.» 8 Accordingly, this study will be restricted to “wall-
wetting”’ fluids, i.e., fluids that form zero contact angles on
the solids that form the tank walls.

From Eq. (3), it may be shown that the fluid in the tank
will wet the tank wall and the vapor will accumulate centrally
in the tank. Considering a tank that contains a centrally
located drop of liquid, the drop is assumed to go from its
central location to a configuration in which it is distributed
about the sides of the tank, covering all parts of the inner
tank surface as shown in Fig. 2. To be as general as possible,
it is assumed that the initial drop will have a convex surface
throughout, i.e., both radii of curvature will have the same
sign. (Actually, the drop will be contained in the form of a

t Fluids such as those used for cryogenic propellants have,
in general, zero contact angles on steel, aluminum, titanium, and
all other metals that have been investigated, and on ceramic or
inorganic glassy solids. This behavior, for liquid oxygen, is
observed every day in the laboratory or field. For liquid hy-
drogen, it has been verified in this laboratory by one of the
authors; zero contact angles were observed on all solids that
were tested.
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sphere.) The shape of the tank is arbitrary. Tt is assumed
that the inside area of the tank is greater than the area of a
liquid-vapor bubble surface with the fluid distributed about
the wall:

flt > flb (4)

This would be true unless A4, had ripples or irregularities that
increased its area. At equilibrium, the surface tensions of
fluids are such that these irregularities would not oceur. The
layer covering the walls is of macroscopic thickness so that
the liquid-gas interface is not influenced by the underlying
solid. The change in the interfacial free energy involved
in transition from stage a to stage b is then as follows:

AF = —’stAt + 'YLSAt + ’YLV(Ab - Ad) (5)

If the sum of the terms on the right-hand side of this equation
is negative, then the wall wet configuration is {avored. This
equation may be rearranged to give

AF + ’stAz - ’YLSAt = ’YLV(Ab - Ad) (53)
From Eq. (4) it is obvious that

Ae> Ay — 44 (6)
Substituting in Eq. (5a)
AF + vysvA: — visd: < yivd, (7)
and
AF < Ad=vsv + vis + vov) (7a)

Now referring to Eq. (3), if the equal sign is assumed, the

quantity in parentheses in Eq. (7a) is equal to zero, and, ac-
cordingly, the free energy is less than zero or negative. If
the inequality is assumed, the free energy is less than the
negative quantity and is negative. Thus the wet-wall eon-
figuration is favored over the centrally located drop. Up to
this point the exact configuration of the wet wall has not been
stated except to note that it does not contain ripples, ete.

VAPOR L1QuID
: 8

SOLID

a) by

Ay = AREA OF THE INNER TANK SURFACE
Aq = AREA OF THE SURFACE OF THE DROP
Ap = AREA OF THE INNER BUBBLE SURFACE

Fig. 2 Schematic of change from central liquid drop to
wall-wet surfaces with central vapor bubble
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Consideration now will be given to the wet-wall configuration
that is the most stable, i.e., has the lowest free energy.

The configuration of the centrally located vapor pocket at
equilibrium will be one of minimum interfacial free energy.
Since only the liquid-vapor surface is a variable, the problem
becomes one of minimizing the surface free energy for a given
vapor volume. If the tank configuration is such that the
vapor volume can form a sphere, it will form and will be the
stable confi~uration, as discussed in Ref. 9. If the sphere
that would contain the vapor has a larger diameter than the
smallest dimension through the center of the tank, the situa-
tion is more complicated.

A cylindrical tank with hemispherical ends which contains
a wetting fluid under zero gravity is assumed. The inter-
facial energies are represented by the inequality (3). Con-
sider the spatial configurations existing at equilibrium as the
fluid is removed and replaced by its vapor. A sphere will
form and grow in the central portion of the tank. The posi-
tion along the axis of the cylinder is arbitrary. The bubble
eventually will approach the walls of the cylinder as illus-
trated in parts a, b, and ¢ of Fig. 3. (As noted below, the
vapor always will be separated from the wall by an adsorbed
film; it is this condition that is referred to as a “film-wet”
surface.)

Up to this point the treatment of the problem has been
based on interfacial free energy considerations. To proceed
past this point and predict the spatial configuration result-
ing upon the removal of more fluid, surface curvature con-
siderations will be introduced. The curvature approach is
consistent with the surface free energy minimization ap-
proach. The curvature approach allows (perhaps) an easier
means of visualizing the problem.

Surface Curvature: Vapor Pressure
Considerations

In general practice, the term ‘“vapor pressure” refers to the
pressure of a vapor in equilibrium with a liquid that has a
flat surface. The vapor pressure is a measure of the escaping
tendency of the liquid. The equilibrium pressure over a
curved surface is different from the pressure over the flat
surface; a drop of liquid has a higher equilibrium vapor
pressure than a flat surface; a vapor bubble in a volume
of liquid has a lower equilibrium vapor pressure than a flat
surface.5 TFor curvatures in which the radius involved is

____>
< B

E VAPOR
s 0

Fig. 3 Vapor bubble; equilibrium conditions, zero-g
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Fig. 4 Pressures across capillary membranes

the order of millimeters or centimeters or larger, the differ-
ences in pressure are exceedingly small. The relationship
between the curvature and the equilibrium pressure is given
by Eq. (8):

RT In(P/Py) = vV{{1/r) + A/ra)] ®

To avoid confusion regarding the various “pressures” in a
system, a short discussion may be given wherein the various
pressures are put in relative order. The equation of capil-
larity relates the pressures on the two sides of a curved
surface: '

Py — Py = y[(1/r) + (1/r2)] 9)

A drop of liquid will have a higher internal hydrostatic pressure
than the gas surrounding it, whereas a vapor bubble will have
a higher pressure than the liquid around it. In Eq. (8) the
pressures involved are vepor pressures over a flat surface
compared to a curved surface.

Consider a liquid in the earth’s gravitational field into
which two capillaries are projected, one capillary having a
surface that is wetted by the liquid (contact angle = 0°) and
the other capillary having a different surface that is not
wetted by the liquid (contact angle = 180°). Assume only
the liquid and its vapor to be present. The fluids will assume
configurations as shown in Fig. 4 (see Ref. 6, p. 10). The
pressures across the menisci will assume certain values de-
pending on the curvature of the menisci. According to
Eq. (9), hydrostatic pressures across the menisci are repre-
sented qualitatively as follows:

Py > Py (10)
P3=P4 » (11)
Py > Py (12)

According to Eq. (8) the relative vapor pressures are as
follows:

P;> P; > P, 13

Since only the vapor of the liquid is present, the pressure in
the gas phase is the same as the vapor pressure. From the
two sets of relative pressures, the order of decreasing pressure
may be listed as follows:

P6>P5>P4(=P3>>PQ>P1 (14)

If the vessel were opened to the air, the pressures would in-
crease throughout the system in an almost uniform increment
(almost the same increment of pressure increase would be
added to all the pressures), and the relative pressure order
given in Eq. (14) would remain unchanged.
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The system shown in Fig. 4 is in equilibrium, even though
the pressure is greater over the right-hand meniscus than
over the left-hand meniscus. The pressure existing because
of meniscus curvature is consistent with the gravity pressure
gradient.

Similar reasoning may be applied to the zero-gravity case.
Consider the situations as given in Fig. 5. In Fig. 5a, a
bubble of vapor exists in a body of liquid; in Fig. 5b, a flat
surface exists in contact with the vapor (rather difficult to
obtain experimentally, but easy enough to imagine); and in
Fig. 5c, a drop of liquid exists at equilibrium with vapor
around it. The system consists of one component in two
phases: liquid and vapor. The pressure notation is the
same as given in Fig. 4, and the pressure relationships are the
same as those given in Eq. (14).

Returning now to Eq. (8), in the problem considered, V,
Py, and v are constant. Thus the curvature as represented
by (1/r) 4+ (1/rs) determines the vapor pressure over the
curved surface. Radii in the liquid are positive, and radii
in the vapor are negative. In any situation occurring in a
tank, in order that equilibrium be established, it is necessary
that the pressure be uniform throughout the vapor volume.
Tt follows that the curvature will be constant for all surfaces
at equilibrium.

Returning to the example given in Fig. 3, as the amount
of liquid is reduced below the amount shown in Fig. 3¢, while
equilibrium is maintained in the system, it is predicted that
the configuration shown in Fig. 3d (see Ref. 9) will result.
The vapor here is contained in a volume that is a cylinder in
its central portion, enclosed on both ends by hemispheres.
If the radius has a length 7/, then the curvature of the hemi-
spherical ends

(/=) + A/ =r") = =2/r

will impose a particular vapor pressure upon the system.
If the eylindrical connecting section of liquid were backed by
bulk liquid, the vapor pressure over the cylindrical surface
would be greater than the vapor pressure above the spherical
surfaces because of the larger total curvature of the surface

—1/r"> =2/

At equilibrium this situation could not exist.

Under these circumstances, it may be predicted that the
layer of liquid in the cylindrical portion will evaporate par-
tially and become thinner, until a film thickness is reached
such that the liquid-vapor surface is close enough to the solid
that the attractive force on surface molecules, due to the
solid, is appreciable. This extra attraction, due to the
underlying solid, will reduce the vapor pressure over the
film until the vapor pressure over the cylindrical portion is
equal to that over the hemispherical portion.

As more liquid is removed from the cylinder, the hemi-
spherical bubble ends will move towards the ends of the
cylinder, and more and more cylindrical, film-wet surface
will be created in the midsection.

Film Thickness

The equilibrium thickness of the film may be predicted
from adsorption isotherms. Ior physical adsorption on a
flat surface at high coverage (more than three or four times
monolayer coverage), adsorption generally follows the
Frenkel-Halsey-Hill equation:10—13

In(P/Po) = —(k/n’) orn = [—k/ In(P/P)]"*  (15)

MacMillan and Teller'* have shown theoretically that k is
of the order of magnitude of unity, and s is approximately 3.

No reliable data are available as to the adsorption of hy-
drogen or oxygen on steel (other than chemisorption, which
is limited to monolayer coverage) or on oxides of iron sup-
ported by the metal; but data on the adsorption of oxygen
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on anatase (TiO;) may be used to estimate the order of
magnitude of the film thickness. For this system, it has
heen reported!?13 that s = 3 and &k = 4.

Consider a system in which a flat surface covered by an
adsorbed film of liquid is in equilibrium with a concave sur-
face of bulk liquid having equal radii of curvature. For
this system, Egs. (8) and (15) may be combined as follows:

—k/n® = v(V/RT)[(1/r) + (1/r3)] (16)
Since 7, = 7,
n = (—kRTr/2vV)s 17

When the solid surface on which the adsorption takes place
is strongly concave, the adsorbed film will be thicker than
that given by Eq. (17). (This is because, by the derivation
of Eq. (15), there will be more of the solid close enough to a
given molecule in the film to exert an appreciable attractive
force on it if the surface is concave than if it is flat. If the
surface is highly convex, then the film will be thinner than
on a flat surface.) However, for surfaces such as those
involved in eryogenic rocket tankage, the radii of curvature
are, in general, large enough that the surface can be con-
sidered to be flat for this caleulation.

For oxygen at 90°K, v = 13.2 dyne/cm, and V = 28.1
em3/mole. The thickness of a monomolecular layer of O,
is about 4 A; so if A is the film thickness in centimeters, A =
4 X 107%n. For a tank 10 ft in diameter, and with the gas
bubble as indicated in Fig. 3d or 3e, the radius » is 150 cm.
Hence

h = 4 X 10-8(2RTr/y V)V
= 7.5 X 105 em = 750 my

For liquid hydrogen at 20°K, the film thickness should be
of the same magnitude as for oxygen at 90°K, namely, about
750 mu and in any case much less than 1 mm thick. The
accuracy of these estimates is limited; however, the film
thickness is clearly very small.

A film such as this is thick enough that an experimental
test of the prediction might be considered; an interferometric
method, e.g., an elipsometer, easily could measure the film
thickness. But such experiments are actually out of the
question, for another reason.

For liquid oxygen at its boiling point, dP/dT = 77 mm/
°C. For liquid hydrogen at its boiling point, dP/dT =
200 mm/°C. From Eq. (8) the reduction in vapor pressure
due to negative curvature for a 150-cm radius tank is

(P — Pg)/Py =2 6.7 X 10710

i.e., the vapor pressure is only about 5 X 10~7 mm Hg below
the saturation pressure. So, to carry out the experimental
test, it would be necessary to ‘“‘thermostat’”’ the tank to
within about & 1078 °K in the case of oxygen or 1079 °K
in the case of hydrogen.

a) c)

-~

P, P, P = PRESSURES IN LIQUID

VAPOR p
5

\

-

PZ’ PS,, P5 = VAPOR PRESSURES

Fig. 5 Pressures across capillary membranes; zero-g
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Effect of Temperature Gradients

For hydrogen at 20°K, dvy/dT =~ —0.2 dyne-cm~-deg ™
For oxygen at 90°K, dv/dT =~ —0.25 dyne-cm~!-deg™™.
If there were a higher rate of heat flow through one wall of
a tank than through .the other walls, so that the bubble
surface became warmer on one side than the other, then
the surface tension would be reduced over the warm part
of the bubble. This reduction in surface tension would
allow the warm surface to be ‘‘pulled” towards the colder
surface areas. The gross effect on the bubble would be a
movement in the direction of the source of heat. In any
case, the overall result would be a different spatial configura-
tion of the fluid. The calculation of the actual distribution
of fluids in a nonisothermal system at zero gravity would be
extremely difficult, even-for very simple configurations of
tanks, walls, and heat sources. There might not be a ‘“sta-
tionary,” steady-state configuration, but, rather, oscillations
even might result.

Predictions

On the basis of the arguments made, predictions may be
made for a wall-wetting fiuid and its vapor, in equilibrium in

Fig. 6 Zero-g liquid collectors

a tank, under a zero-gravity field, and in the absence of me-
chanical and thermal disturbances:

1) The fluid will wet the wall and distribute itself so as to
form a vapor space in the central portion of the tank.

2) If a sphere that contains the vapor space has a diameter
Jess than the smallest diameter of a vessel, then this sphere,
located away from the wall in the tank (or in the extreme,
just barely tangent to the wall), will represent the stable
configuration.

3) If the sphere containing the vapor volume has a diameter
greater than the small dimension of the tank, a centrally
located vapor space will result with the liquid distributed
so that the surfaces backed by bulk liquid are of uniform
curvature; other surfaces will be film-wetted tank walls.
The escaping tendency from the wetted tank walls will be
adjusted by evaporation (and thus reduction in thickness)
to equal the escaping tendency from the curved surfaces.
Thus, the escaping tendency of the surfaces exposed to the
vapor volume will be uniform.

4) The curvature of a bulk liquid surface will be greater
than or equal to the curvature of any exposed film-wet sur-
face. (Otherwise, the liquid would collect on the film-wet
surface.)

For similar systems displaced from equilibrium, predic-
tions are made as follows:

1) Mass rearrangement to give equilibrium may occeur by
flow in the liquid phase and by evaporation from an area of
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high escaping tendency and condensation in an area of low
escaping tendency. (In the case of the movement through
the vapor phase, the inequality in vapor pressure rapidly
translates itself into an inequality in temperature, since the
surface from which the fluid is evaporating becomes cooled
and the surface upon which the condensation is occurring
becomes heated. The rate of mass transfer then is controlled
by the heat transfer. Under zero-gravity conditions heat
transfer occurs mainly by conduction, since convection is not
present, and, with small temperature differentials at low
temperatures such as 20°K, radiative heat transfer is rather
slow. If the tank wall is a good conductor or if there are
other members in the tank which are good conductors, the
rate of heat transfer will, of course, be accelerated.)

2) If a steady source of heat is present which maintains one
region of the walls appreciably warmer than other regions,
then one area of the vapor bubble would become warm, and
this warm film would be pulled to the colder surface. If other
phenomena are not active to replenish the fluid in the warm
area, eventually the warm tank surface should be free from
bulk liquid and merely “film-wet.” Evaporation and con-
densation would tend to produce the same result.

From these rules certain conclusions regarding space-vehicle
hardware may be drawn. Tubes with large curvature, i.e.,
small diameter, will fill with fluid, and the surface at the
opening of the tube will assume a shape consistent with the
vapor pressure in the tank. Thus a vapor vent tube that re-
lies for its performance on its projecting into the vapor space
should have the valve on the end of the tube in the vapor
space. Fuel lines leading from the tank, if opened to the
tank, should fill with fluid (providing fuel line temperature
phenomena are not over-riding).

By properly shaping the surfaces, it would appear to be
possible, given sufficient time, to cause fluid to collect in any
volume desired. For example, a tank of conieal shape
would collect the fluid at the apex end. If it were desired
to design a tank employing this principle, a honeycomb of
cones (or “hexagonal cones”) with a common apex at the
exit port of the tank could be used. This would provide a
“wick” for the fluid. The fluid could be collected centrally
(away from walls). If bubbles resulted from heat absorp-
tion, these would tend to move away from the apex. Two
other arrangements in the same category are shown in Fig. 6.
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